
Jovian

Aakash N S, Siddhant Ujjain

May 09, 2020





GETTING STARTED

1 Installation 3

2 Uploading Jupyter Notebooks to Jovian 5
2.1 Uploading Notebooks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
2.2 Benefits of Jovian . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

3 Reproducing uploaded notebooks 7
3.1 Clone . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
3.2 Fork . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

4 Notebook versioning and diffs 9
4.1 Version control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
4.2 View Differences . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

5 Attaching files and model outputs 11
5.1 How to attach files? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
5.2 What to include in the files argument? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
5.3 What to include in the artifacts argument? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
5.4 Where to search for the files after committing? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

6 Tracking Datasets, Hyperparameters and Metrics 13
6.1 Dataset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
6.2 Hyperparameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
6.3 Metrics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
6.4 Reset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

7 Comparing and Analyzing experiments 15
7.1 Sort . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
7.2 Show, Hide and Reorder columns . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
7.3 Add notes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
7.4 View Diff between specific versions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
7.5 Archive/Delete versions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
7.6 Filter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

8 Collaborating on Jovian projects 17
8.1 How to add collaborators? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
8.2 Comment on individual code cells . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
8.3 Maintain public, secret and private notebooks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

9 Embed Jupyter Notebooks with Jovian.ml 19
9.1 Live Demo . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

i



9.2 Open up Embed modal . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
9.3 Customize options and preview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
9.4 Copy and Embed . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

10 Slack Notifications 21
10.1 Connect to a Slack Workspace . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
10.2 Send Notifications from your script . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
10.3 Integration Preferences . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

11 Adding Topics to you Notebooks 23
11.1 About Topics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
11.2 How to add Topics in your notebooks? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
11.3 Explore Topics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

12 Git Integration 25

13 Jovian Pro 27

14 Commit 29

15 Log Dataset, Hyperparams & Metrics 31

16 Send Notifications to Slack 33

17 Command Line Commands 35
17.1 Initialize . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
17.2 Clone a Notebook . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
17.3 Pull the latest Notebook . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
17.4 Install the required dependencies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
17.5 Version . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
17.6 Enable or Disable Jupyter Notebook Extension . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

18 Fastai Callback 37

19 Keras Callback 39

20 oEmbed Endpoint for embedding Jovian Notebooks 41
20.1 API Endpoint URL . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

21 Jovian: Libraries and Integrations 43
21.1 Jupyter Notebook Extension . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
21.2 Jupyter Lab Extension . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
21.3 Github Integration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
21.4 Keras Integration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
21.5 Fastai Integration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
21.6 VS Code Integration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
21.7 PyCharm Integration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
21.8 Tensorflow Integration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
21.9 PyTorch Integration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
21.10 Telegram Integration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
21.11 Scikit Learn Integration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
21.12 Xgboost Integration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
21.13 SciPy Integration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
21.14 OpenCV Integration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
21.15 Apache Spark Integration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
21.16 Anaconda Integration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

ii



Index 49

iii



iv



Jovian

is a platform for sharing and collaboraring on Jupyter notebooks and data science projects. jovian-py is an open-source
Python package for uploading your data science code, Jupyter notebooks, ML models, hyperparameters, metrics etc.
to your Jovian.ml account.

GETTING STARTED 1



Jovian

2 GETTING STARTED



CHAPTER

ONE

INSTALLATION

The jovian python library can be installed using the pip package manager. To install jovian via terminal or
command line, run:

pip install jovian --upgrade

You can also install the jovian library directly within a Jupyter Notebook, by running the following command in a
code cell:

!pip install jovian --upgrade

Caution: If you get a Permission denied error, try installing with sudo permission (on Linux/Mac).

$ sudo pip install jovian --upgrade

Another alternative is to try installing with the --user flag, but you’ll need to ensure that the target directory is
added to your system PATH.

$ pip install jovian --upgrade --user

Once the installation is complete, you can start uploading Jupyter notebooks to Jovian.

Configuration (for Jovian Pro users only)

If you are a Jovian Pro user, run the following commands on the terminal (or command line) to connect the jovian
library with your company’s internal Jovian Pro site:

jovian configure

You can also do this directly within a Jupyter notebook, by executing the following inside a code cell:

import jovian
jovian.configure()

The above command prompts for the following information:

1. Organization ID: The Organization ID provided by your company for authentication. E.g. if you are accessing
Jovian Pro at https://mycompany.jovian.ml , your organization ID is mycompany.

2. API key: You’ll get the API key when you’re logged in to your organization’s Jovian Pro site. By clicking on
the API key button, the key will be copied to clipboard.

Note: You need to run jovian configure or jovian.configure() only once after installation. Your
credentials are cached in the ~/.jovian directory on your computer. You can run jovian reset to clear this

3

https://mycompany.jovian.ml?utm_source=docs


Jovian

configuration.

You can learn more about Jovian Pro here, or start uploading Jupyter notebooks to Jovian in the next section.

4 Chapter 1. Installation



CHAPTER

TWO

UPLOADING JUPYTER NOTEBOOKS TO JOVIAN

Jovian allows you to upload and share Jupyter Notebook instantly with a single command, directly within Jupyter.
Make sure you’ve completed the installation before reading further.

2.1 Uploading Notebooks

Step 1: Import jovian by running the following command within a Jupyter notebook.

import jovian

Step 2: After writing some code, running some experiments, training some models and plotting some charts, you can
save and commit your Jupyter notebook.

jovian.commit()

When you run jovian.commit for the first time you’ll be asked to provide an API key, which you can get from
your Jovian.ml (or Jovian Pro) account.

Here’s what jovian.commit does:

• It saves and uploads the Jupyter notebook to your Jovian.ml (or Jovian Pro) account.

• It captures and uploads the python virtual environment containing the list of libraries required to run your
notebook.

• It returns a link that you can use to view and share your notebook with friends or colleagues.

For more features of jovian.commit and API reference visit Commit.

Attention: In certain environments like JupyterLab and password protected notebooks, jovian may not be able
to detect the notebook filename automatically. In such cases, pass the notebook’s name as the nb_filename
argument to jovian.commit.

2.2 Benefits of Jovian

Easy sharing and collaboration: Just copy the link to share an uploaded notebook with your friends or colleages.
Your notebooks are also visible on your profile page, unless you mark them Secret. You can also add collaborators and
let others contribute to your project (learn more).

5



Jovian

Cell-level comments and discussions: Jovian’s powerful commenting interface allows your team to discuss specific
parts of a notebook with cell-level comment threads. Just hover over a cell and click the Comment button. You’ll
receive an email when someone comments on your notebook, or replies to your comment.

End-to-end reproducibility: Jovian automatically captures Python libraries used in your notebook, so anyone (in-
cluding you) can reproduce your work on any computer with a single command: jovian clone. You can also use
the ‘Run’ dropdown on the Jovian notebook page to run your notebooks on free cloud GPU platforms like Google
Colab, Kaggle Kernels and BinderHub.

This is just a small selection of features that Jovian offers. Continue reading by clicking the Next -> button to learn
more, or use the sidebar to jump to a specific section.

6 Chapter 2. Uploading Jupyter Notebooks to Jovian



CHAPTER

THREE

REPRODUCING UPLOADED NOTEBOOKS

An uploaded notebook on Jovian.ml can be reproduced in any other machine. Following are the steps involved to
reproduce a notebook.

3.1 Clone

1. Visit the link of the uploaded notebook.

2. Click on the Clone button, to copy the notebook’s clone command to the clipboard.

3. Paste the command in the terminal, in the directory where you want to clone the notebook project and then run
the command.

The copied command will be of the the following format

jovian clone <username/project-title>

3.1.1 Install

Jovian.ml captures the original python environment of the notebook, which make it easier to reproduce the notebook by
installing all the required dependencies. The following commands uses Anaconda to install all the required packages,
make sure that conda is installed.

Once the notebook is cloned, it would have created a folder with the name of the notebook project.

Move into that directory.

cd jovian-demo

Then run

jovian install

The above command prompts for a virtual environment name where it will install all the required packages. By default
it will have the original environment name in the square brackets, just click enter key to retain the name else specify
the environment name.

In this way, Jovian.ml seamlessly ensures the end-to-end reproducibility of your Jupyter notebooks across different
operating systems.

Note: You have to own the notebook or have to be a collaborator to commit changes to the same notebook project. If
not you can commit the cloned notebook with any changes to your Jovian profile as a new notebook project.

7



Jovian

3.1.2 Pull

If there are any new versions uploaded after you have cloned the notebook by any of the collaborator. You can use
pull to get all those changes.

Move to the cloned directory and run

jovian pull

Attention: Beware any uncommitted changes will be lost during the process of jovian pull. When you pull
the notebook it will be a duplicate of the latest version of the notebook on Jovian.

3.2 Fork

A fork is a copy of a notebook. Forking a notebook allows you to freely experiment with changes without affecting
the original notebook.

When you clone a notebook from Jovian, it creates a local copy of the notebook in your machine. You can fork a
notebook instead, to create a copy in your Jovian profile.

Forking a notebook This procedure assumes that the notebook version you’re trying to Fork is public, or shared with
you if it is secret/private. See Collaboration section for more details.

Forking a notebook will save a copy of the Notebook in your Jovian profile.

1. Visit the notebook version page that you want to Fork.

2. Click on the Fork button.

3. This will create a copy of the notebook in your profile, and you will be redirected to the forked version of the
Notebook.

8 Chapter 3. Reproducing uploaded notebooks



CHAPTER

FOUR

NOTEBOOK VERSIONING AND DIFFS

4.1 Version control

If you’re used to creating many duplicate versions of notebooks with slight modifications and long file names. Look
no further, Jovian.ml will be your version control for notebooks.

jovian.commit records all the versions under same notebook project. So, each change can be a version by author
and collaborators which can be easily toggled in the website

Note: You have to own the notebook or have to be a collaborator to commit changes to the same project notebook. If
not you can commit any changes made to your profile as a new notebook.

4.2 View Differences

All the versions are comparable, you can view additions, deletions made among any 2 versions of the notebook and
also hide/show common part of the code.

How to view the differences?

1. Commit different versions and visit Jovian.ml .

2. Click on Version drop down on the right top corner.

3. Click on Compare Versions

4. Select any 2 versions with the use of check boxes and click on View Diff button.

There are more things to be compared, but first let’s add more content to the notebook to understand all the parameters
that can be compared. Click on Next to follow through.

9



Jovian

10 Chapter 4. Notebook versioning and diffs



CHAPTER

FIVE

ATTACHING FILES AND MODEL OUTPUTS

As seen in the previous section by committing, source code and environment files are captured & uploaded. More
files can be attached to the notebook such as files with helper code, output files/model checkpoints that the notebook
is generating.

5.1 How to attach files?

jovian.commit(files=[], outputs=[])

5.2 What to include in the files argument?

The type of files which is required to run the notebook.

• Helper code (.py)

• Some input CSVs

5.3 What to include in the artifacts argument?

Any type of outputs that the notebook is generating.

• Saved model or weights (.h5, .pkl, .pth)

• Outputs, Submission CSVs

• Images outputs

5.4 Where to search for the files after committing?

All the attached files are listed under Files Tab.

Files can be:

1. Renamed

2. Downloaded

3. Deleted

4. View Raw

11



Jovian

5. Uploaded

12 Chapter 5. Attaching files and model outputs



CHAPTER

SIX

TRACKING DATASETS, HYPERPARAMETERS AND METRICS

Spreadsheets is one of the ways to track information & results of multiple ML experiments. However, using spread-
sheets can be tiresome and non-intuitive without the context of the code.

Jovian.ml makes its easy for anyone to track information about datasets, hyperparameters and metrics which are
associated with each version of the your experiment in notebooks. Its also displays these information version-by-
version of your notebook under single UI.

These information of a notebook are all added to Records Tab where you can toggle and view each version’s log.

6.1 Dataset

data = {
'path': '/datasets/mnist',
'description': '28x28 gray-scale images of handwritten digits'

}
jovian.log_dataset(data)

6.2 Hyperparameters

hyperparams = {
'arch_name': 'cnn_1',
'lr': .001

}
jovian.log_hyperparams(hyperparams)

6.3 Metrics

metrics = {
'epoch': 1,
'train_loss': .5,
'val_loss': .3,
'acc': .94

}
jovian.log_metrics(metrics)

13



Jovian

The input to any of these can be a python dict . You can add custom parameters that are related to your experiment
and have it record values manually, or automate it to record the values of a variable in a loop. Visit this page for these
logging API reference.

We have callbacks for keras and fastai to automatically record hyperparams and metrics check it out.

6.4 Reset

If you’re not satisfied with some experiment and want to discard the current recorded logs before a commit. Use

jovian.reset()

Click Next to look at how to compare all of these information of all the versions.

14 Chapter 6. Tracking Datasets, Hyperparameters and Metrics



CHAPTER

SEVEN

COMPARING AND ANALYZING EXPERIMENTS

Once you have more than one versions of a notebook, you will be able to use Compare Versions present in the
Version dropdown on the top right corner.

Here you can observe all types of information about all of your versions.

• Title

• Time of Creation

• Author

• All the parameters logged under dataset.

• All the parameters logged under hyperparameters.

• All the parameters logged under metrics.

• Notes (for author and collaborators add extra notes)

7.1 Sort

You can sort any column or a sub-column (For ex: accuracy or any other metric, date of creation etc.) by clicking on
the column header.

7.2 Show, Hide and Reorder columns

You can create a custom view to analyse & compare your choice of parameters. Click on Configure button and
then tick on the checkboxes to create a customized view. Click and drag the elements to reorder them based on your
preference.

7.3 Add notes

You can add notes to summarize the experiment for reference or for collaborators to refer to.

7.4 View Diff between specific versions

Select any of the 2 versions by ticking the checkbox next to each version-row of the compare table which can be seen
when you hover over any row. Click on View Diff button to view the additions and deletion made.

15



Jovian

7.5 Archive/Delete versions

Select version/versions by ticking the checkbox of the row/rows. This enables both Archive and Delete ready for
the respective actions.

7.6 Filter

By default all the archived versions are hidden, you can display them by enabling Show Archived in Filter
dropdown.

16 Chapter 7. Comparing and Analyzing experiments



CHAPTER

EIGHT

COLLABORATING ON JOVIAN PROJECTS

Jovian.ml allows you to add collaborators to work with you on a ML Project.

8.1 How to add collaborators?

Click on Share button of the notebook and add them by their username or email id registered with Jovian.ml (you
can add a non jovian user email id as well to send an invite).

This will allow the contributors to be able to commit changes to the same notebook project. The experiments by all
the collaborators will also show up in the compare table tab.

8.2 Comment on individual code cells

Users can comment on any code cells individually and maintain that thread to have specific discussion about a part of
the source code with context.

8.3 Maintain public, secret and private notebooks

You can find the option to Public, Secret and Private in the settings for each notebook.

• Public : These notebooks are visible on your public profile and accessible to all.

• Secret : These notebooks are hidden from your public profile but anyone with the link can access the notebook.

• Private : These notebooks are also hidden from your public profile and are only accessible to the owner and
collaborators.

Note that Private and Secret notebooks will still be visible when you’re viewing your own profile. To hide from your
own profile you can archive it.

17



Jovian

18 Chapter 8. Collaborating on Jovian projects



CHAPTER

NINE

EMBED JUPYTER NOTEBOOKS WITH JOVIAN.ML

If you’re a blogger who takes screen snips from your Jupyter Notebooks to attach to your blog or want to showcase
your wonderful notebooks on a website and wondering how to embed one. We have heard your worries and are here
with this feature, any notebook on Jovian.ml is embeddable.

We got you covered if you want to embed any of the following.

• Markdown cell

• Code cell with output

• Code cell without output

• Just the output cell

• or Whole Notebook

9.1 Live Demo

Before seeing how to to embed, have a preview of the embed right here.Below we have embedded a Jupyter notebook
in our docs page, using iframe. You can interact with the notebook like copy the source code of a cell, copy a image
output, scroll each cells etc.

9.2 Open up Embed modal

Commit a notebook or visit a uploaded notebook on Jovian.ml

9.2.1 Click on Embed button

This is ideal if you need embed the whole notebook

OR

9.2.2 Click on Embed icon on any cell

This is ideal when you need to embed a specific cell

19



Jovian

9.3 Customize options and preview

Go ahead if u need more customization like only output cell and preview the embed below.

9.4 Copy and Embed

9.4.1 Copy Embed Link for sites which support oEmbed

Medium and Reddit support oEmbed so if you’re writing a blog and want to add snippets with or without output charts
or helping someone on reddit thread you can use this.

Just copy and paste the embed link, here is a example. Click on the image to visit the medium blog where snippets are
added.

9.4.2 Copy iframe code and add it to a website

If you’re building a profile website to showcase your projects or academic institution/community/meetup website
making a resources page this is right for you.

Just copy and paste the iframe code in the website’s code, here is a example. Click on the image to visit the a example
Github Page where the whole notebook is embedded.

20 Chapter 9. Embed Jupyter Notebooks with Jovian.ml



CHAPTER

TEN

SLACK NOTIFICATIONS

Get notifications from your training experiment and stay updated with all the milestones of your code. No more
watching the progress bar of your fit function to keep track of your model training. Use the same integration to get
notification about other activities on Jovian.

10.1 Connect to a Slack Workspace

Visit Jovian.ml and click on the Connect Slack. You’ll be redirected to Slack Webpage.

Choose a workspace from the top right corner and a channel to integrate our Slack app. By clicking on Allow,
integration will be completed and will get a acknowledgement on the selected channel, this is where you’ll be getting
all your notifications.

Important: We suggest you to create your own Slack Workspace so that you won’t spam with notifications on a
public workspace. Or you can choose your DM instead if you don’t want to create a new workspace.

10.2 Send Notifications from your script

This will be helpful to get updates on while training a model. You can send any python dict or string, it can
be when some milestones are reached or information about the metrics(accuracy, loss . . . ).

We have this integrated to our callbacks to get automated notifications about the metrics, check out Callbacks Section.

For API documentation check out Jovian Slack Notify

10.3 Integration Preferences

You can customize on what notifications you get to your Slack. To update the preferences visit Jovian.ml Settings or
you go to your Profile Dropdown on the top right corner and click on Settings.

21

https://slack.com/create#email


Jovian

22 Chapter 10. Slack Notifications



CHAPTER

ELEVEN

ADDING TOPICS TO YOU NOTEBOOKS

Jovian allows you to add topics to your notebooks. Adding topics to your notebooks helps other people find and
contribute to your projects easily. You can add topics related to your project’s intended purpose, subject area, frame-
works/languages used, or other important qualities that you find useful.

11.1 About Topics

With topics, you can explore notebooks in a particular subject area, find projects to contribute to, discover new solu-
tions to a specific problem, or simply explore the frameworks that you love in action. Topics appear on the main page
of a notebook. You can click a topic name to see related list of other notebooks tagged with that topic.

To browse the most used topics, go to https://jovian.ml/explore.

11.2 How to add Topics in your notebooks?

1. Click on Add Topics button in the Notebook page.

2. Type the topic you want to add to your notebook, then type a space. Only lowercase letters, digits and hyphens are
allowed in a topic name.

3. After you’re done adding topics, click Save.

Important: Collaborators in your project will also be able to Add/Modify topics.

11.3 Explore Topics

Public, secret and private notebooks can have topics, although you will only see private/secret notebooks that you have
access to in topic search results.

To explore more notebooks tagged with a topic, simply click on a topic badge that appears in the Notebook page.

You can search for notebooks that are associated with a particular topic. You can also search for a list of topics on
Jovian. Change the URL on topics page with a comma separated list of topics.

Examples:

• https://jovian.ml/topics/pytorch

• https://jovian.ml/topics/pytorch,tutorial

23

collaborate.html


Jovian

Topics Page

24 Chapter 11. Adding Topics to you Notebooks



CHAPTER

TWELVE

GIT INTEGRATION

jovian.commit automatically performs git commit if the current notebook/script is in a git repository, as git_commit
is True by default and works only inside a git repository.

Use git_message parameter to give a different commit message to git, else it will take jovian’s commit message
by default.

jovian.commit(message="jovian version commit message",
git_message="git commit message")

Jovian also generates a link to the git commit associated to each jovian commit versions and is accessible
with a button on the notebook linking to github/gitlab.

Important: Jovian does not perform git push, so if the asscociated link is not available then you’ll have push
your repo.

25

https://git-scm.com/docs/git-commit


Jovian

26 Chapter 12. Git Integration



CHAPTER

THIRTEEN

JOVIAN PRO

Schedule a meeting for a Demo and discussion with Aakash NS (CEO, Jovian.ml).

Please contact us at hello@jovian.ml

27

https://meetings.hubspot.com/aakashns


Jovian

28 Chapter 13. Jovian Pro



CHAPTER

FOURTEEN

COMMIT

jovian.commit(message=None, files=[], outputs=[], environment=’auto’, privacy=’auto’, file-
name=None, project=None, new_project=None, git_commit=False, git_message=’auto’,
**kwargs)

Uploads the current file (Jupyter notebook or python script) to

Saves the checkpoint of the notebook, captures the required dependencies from the python environment and
uploads the notebook, env file, additional files like scripts, csv etc. to . Capturing the python environment
ensures that the notebook can be reproduced.

Parameters

• message (string, optional) – A short message to be used as the title for this ver-
sion.

• files (array, optional) – Any additional scripts(.py files), CSVs etc. that are re-
quired to run the notebook. These will be available in the files tab of the project page on
Jovian.ml

• outputs (array, optional) – Any outputs files or artifacts generated from the mod-
eling processing. This can include model weights/checkpoints, generated CSVs, output
images etc.

• environment (string, optional) – The type of Python environment to be cap-
tured. Allowed options are ‘conda’ , ‘pip’, ‘auto’ (for automatic detection) and None (to
skip environment capture).

• privacy (bool, optional) – Privacy level of the project (if a new one is being cre-
ated).

– ’auto’ - use account level settings. Defaults to ‘public’

– ’public’ - visible on profile and publicly accessible/searchable

– ’secret’ - not on profile only accessible via the direct link

– ’private’ - only for the accessible to owner and collaborators

This argument has no effect on existing project. Change the privacy settings of a existing
notebook on the webapp.

• filename (string, optional) – The filename of the current Jupyter notebook or
Python script. This is detected automatically in most cases, but in certain environments like
Jupyter Lab or password protected notebooks, the detection may fail and the filename needs
to be provided using this argument.

• project (string, optional) – Name of the project to which the current note-
book/file should be committed. Format: ‘username/title’ e.g. ‘aakashns/jovian-example’
or ‘jovian-example’ (username of current user inferred automatically). If the project does

29



Jovian

not exist, a new one is created. If it exists, the current notebook is added as a new version to
the existing project, if you are a owner/collaborator. If left empty, project name is picked up
from the .jovianrc file in the current directory, or a new project is created using the filename
as the project name.

• new_project (bool, optional) – Whether to create a new project or update the
existing one. Allowed option are False (use the existing project, if a .jovianrc file exists, if
available), True (create a new project)

• git_commit (bool, optional) – If True, also performs a Git commit and records the
commit hash. This is applicable only when the notebook is inside a Git repository.

• git_message (string, optional) – Commit message for git. If not provided, it
uses the message argument

Attention: Pass notebook’s name to filename argument, in certain environments like Jupyter Lab and
password protected notebooks sometimes it may fail to detect notebook automatically.

30 Chapter 14. Commit



CHAPTER

FIFTEEN

LOG DATASET, HYPERPARAMS & METRICS

jovian.log_dataset(data_dict=None, verbose=True, **data_args)
Record dataset details for the current experiment

Parameters

• data_dict (dict, optional) – A python dict to be recorded as dataset.

• verbose (bool, optional) – By default it prints the acknowledgement, you can re-
move this by setting the argument to False.

• **data_args (optional) – Instead of passing a dictionary, you can also pass each
individual key-value pair as a argument (see example below)

Example

import jovian

path = 'data/mnist'
description = '28x28 images of handwritten digits (in grayscale)'

jovian.log_dataset(path=path, description=description)
# or
jovian.log_dataset({ 'path': path, 'description': description })

jovian.log_hyperparams(data_dict=None, verbose=True, **data_args)
Record hyperparameters for the current experiment

Parameters

• data_dict (dict, optional) – A python dict to be recorded as hyperparmeters.

• verbose (bool, optional) – By default it prints the acknowledgement, you can re-
move this by setting the argument to False.

• **data_args (optional) – Instead of passing a dictionary, you can also pass each
individual key-value pair as a argument (see example below)

Example

import jovian
jovian.log_hyperparams(arch='cnn', lr=0.001)
# or
jovian.log_hyperparams({ 'arch': 'cnn', 'lr': 0.001 })

31



Jovian

jovian.log_metrics(data_dict=None, verbose=True, **data_args)
Record metrics for the current experiment

Parameters

• data_dict (dict, optional) – A python dict to be recorded as metrics.

• verbose (bool, optional) – By default it prints the acknowledgement, you can re-
move this by setting the argument to False.

• **data_args (any, optional) – Instead of passing a dictionary, you can also pass
each individual key-value pair as a argument (see example below)

Example

import jovian
jovian.log_metrics(epochs=1, train_loss=0.5,

val_loss=0.3, val_accuracy=0.9)
# or
jovian.log_metrics({ 'epochs': 1, 'train_loss': 0.5 })

jovian.reset(*record_types)
Reset the tracked hyperparameters, metrics or dataset (for a fresh experiment)

Parameters *record_types (strings, optional) – By default, resets all type of records.
To reset specific type of records, pass arguments metrics, hyperparams, dataset

Example

import jovian
jovian.reset('hyperparams', 'metrics')

32 Chapter 15. Log Dataset, Hyperparams & Metrics



CHAPTER

SIXTEEN

SEND NOTIFICATIONS TO SLACK

jovian.notify(data, verbose=True, safe=False)
Sends the data to the Slack workspace connected with your Jovian account.

Parameters

• data (dict|string) – A dict or string to be pushed to Slack

• verbose (bool, optional) – By default it prints the acknowledgement, you can re-
move this by setting the argument to False.

• safe (bool, optional) – To avoid raising ApiError exception. Defaults to False.

Example

import jovian

data = "Hello from the Integration!"
jovian.notify(data)

Important: This feature requires for your Jovian account to be connected to a Slack workspace, visit Jovian
Integrations to integrate them and to control the type of notifications.

33

https://slack.com
https://jovian.ml?utm_source=docs
https://jovian.ml/settings/integrations?utm_source=docs
https://jovian.ml/settings/integrations?utm_source=docs


Jovian

34 Chapter 16. Send Notifications to Slack



CHAPTER

SEVENTEEN

COMMAND LINE COMMANDS

17.1 Initialize

Requests for a API Key for a new user, can find the key at Jovian. By clicking on API key button, key will be copied
to the clipboard.

$ jovian init

17.2 Clone a Notebook

Clone a notebook form Jovian, by clicking on the Clone button of a notebook repo the whole clone command will
be copied to the clipboard.

$ jovian clone {notebook_id}

17.3 Pull the latest Notebook

Pull the latest version of the notebook, use the command in a cloned repository or from a repository where you have
committed to jovian.

$ jovian pull

Caution: Make sure the changes are committed if needed, pull overwrites the current notebook.

17.4 Install the required dependencies

Install all the dependencies required to the the cloned notebook, use the command in a cloned repository.

$ jovian install

Important: The above command prompts ‘ Please provide a name for the conda environment [{env_name}]: ‘

35

https://jnv.io


Jovian

Press enter to install the dependencies to env_name (base env if the content of the square brackets is empty) else
provide the env name in the prompt.

17.5 Version

Displays the current installed version of jovian library.

$ jovian version

17.6 Enable or Disable Jupyter Notebook Extension

By default, the jovian jupyter extension is enabled.

$ jovian enable-extension

$ jovian disable-extension

Note: The changes are observed when the webpage of the notebook is refreshed.

36 Chapter 17. Command Line Commands



CHAPTER

EIGHTEEN

FASTAI CALLBACK

class jovian.callbacks.fastai.JovianFastaiCallback(learn: fastai.basic_train.Learner,
arch_name=None, re-
set_tracking=True)

Fastai callback to automatically log hyperparameters and metrics.

Parameters

• learn (Learner) – A learner object reference of your current model.

• arch_name (string) – A name for the model you’re training.

Example

from jovian.callbacks.fastai import JovianFastaiCallback

jvn_cb = JovianFastaiCallback(learn, 'res18')
learn.fit_one_cycle(5, callbacks = jvn_cb)

Tutorial

Visit this for a detailed example on using the fastai callback, also visit the Records tab to see all the logs of that
notebook logged by the callback.

37

https://jovian.ml/PrajwalPrashanth/7f16274fc3224d829941bc2553ef6061?utm_source=docs


Jovian

38 Chapter 18. Fastai Callback



CHAPTER

NINETEEN

KERAS CALLBACK

39



Jovian

40 Chapter 19. Keras Callback



CHAPTER

TWENTY

OEMBED ENDPOINT FOR EMBEDDING JOVIAN NOTEBOOKS

oEmbed is an open standard to easily embed content from oEmbed providers into your site. You can use the oEmbed
standard for embedding Jovian notebooks into your website, have a look at oEmbed.com.

20.1 API Endpoint URL

You can use our API endpoint to request the embed code for public Notebooks, all responses are in json format.
Replace {notebook-url} by your Jovian Notebook URL, or Jovian Viewer URL, or any raw .ipynb file URL:

• [GET]https://jovian.ml/api/oembed.json/?url={notebook-url}&maxwidth={max-width}

Parameters:

• url (String, required): The URL of the notebook or Jovian Viewer URL.

• cellId (Integer, optional): Index of the cell of the notebook for cell-level embeds. If no cellId id present,
whole notebook gets embedded.

• maxwidth (Integer, optional): The maximum width of the embedded resource (optional). Note that the max-
height parameter is not supported. This is because the embed code is responsive and its height varies depending
on its width.

Example URLs:

• Jovian Notebook URLs

– https://jovian.ml/aakashns/01-pytorch-basics

– https://jovian.ml/aakashns/movielens-fastai/v/14

• Jovian Viewer URLs

– http://jovian.ml/viewer?url={notebook-url}

• Raw .ipynb file URL

Response:

{
"title": "Jovian Viewer",
"provider_name": "Jovian",
"provider_url": "https://jovian.ml",
"author_name": "Jovian ML",
"version": "1.0",
"type": "rich",
"author_url": "https://github.com/JovianML",
"height": 800,

(continues on next page)

41

https://oembed.com
https://jovian.ml/api/oembed.json/?url=https://jvn.storage.googleapis.com/gists/aakashns/5bc23520933b4cc187cfe18e5dd7e2ed/raw/901a9d2508bd441dbf06954c5f46bf58/movielens-fastai.ipynb
https://jovian.ml/aakashns/01-pytorch-basics
https://jovian.ml/aakashns/movielens-fastai/v/14
http://jovian.ml/viewer?url=https%3A%2F%2Fjvn.storage.googleapis.com%2Fgists%2Faakashns%2F5bc23520933b4cc187cfe18e5dd7e2ed%2Fraw%2F901a9d2508bd441dbf06954c5f46bf58%2Fmovielens-fastai.ipynb
https://jvn.storage.googleapis.com/gists/aakashns/5bc23520933b4cc187cfe18e5dd7e2ed/raw/901a9d2508bd441dbf06954c5f46bf58/movielens-fastai.ipynb


Jovian

(continued from previous page)

"width": 800,
"html": "<iframe src='https://jovian.ml/embed?url=https%3A//jvn.storage.googleapis.

→˓com/gists/aakashns/5bc23520933b4cc187cfe18e5dd7e2ed/raw/
→˓901a9d2508bd441dbf06954c5f46bf58/movielens-fastai.ipynb' title='Jovian Viewer'
→˓height=800 width=800 frameborder=0 allowfullscreen></iframe>"
}

42 Chapter 20. oEmbed Endpoint for embedding Jovian Notebooks



CHAPTER

TWENTYONE

JOVIAN: LIBRARIES AND INTEGRATIONS

Jovian integrates seamlessly with your favorite tools and libraries. Automate your workflow and boost your produc-
tivity.

21.1 Jupyter Notebook Extension

Now you can commit your Jupyter Notebook to Jovian with just One Click. Make sure you’ve completed the Instal-
lation before reading further.

21.1.1 Using Jovian Jupyter Extension

Once you have successfully installed jovian, a new button Commit will appear on the tool bar. When using Commit
button for first time you’ll be asked to provide an API key.

You can get the API key at Jovian. Once you log in, just click on API key button, and the key will be copied to the
clipboard.

Valid API key

If the key is valid you will be notified with the following alert.

Error with API key

If the entered API key is invalid you will get following error.

Successful Commit

Once the API key has been validated, you can start committing to Jovian by clicking Commit button. Once the
Notebook has been committed successfully you will get the confirmation message with the link where the Jupyter
Notebook has been uploaded to, you can use the copy button to get the link to the share the notebook.

21.1.2 Commit with more options

This makes use of jovian.commit’s parameters to enable the user to commit with preferences like private notebook,
new notebook project, to add outputs and files . . . ..

Step 1: click the dropdown menu

43

https://jovian.ml?utm_source=docs
https://jovian.ml?utm_source=docs
https://jovian.ml?utm_source=docs


Jovian

Step 2: choose commit with options

Note: By default the parameters are derived from jovian.commit, changes to any parameter persists after commit.

Step 3: Click on Commit to commit the notebook with following options.

21.1.3 Enable or Disable the extension

By default, the Jovian Jupyter Notebook Extension is enabled to the environment where jovian is installed.

You can also disable the extension by running the following command.

$ jovian disable-extension

To Enable the Notebook Extension, when you have manually disabled it.

$ jovian enable-extension

21.2 Jupyter Lab Extension

Now you can commit your Jupyter Notebook to Jovian with just One Click. Make sure you’ve completed the Instal-
lation before reading further.

21.2.1 Using Jovian Jupyter Lab Extension

Once you have successfully installed jovian, a new button Commit will appear on the tool bar. When using Commit
button for first time you’ll be asked to provide an API key.

You can get the API key at Jovian. Once you log in, just click on API key button, and the key will be copied to the
clipboard.

Valid API key

If the key is valid you will be notified with the following alert.

Error with API key

If the entered API key is invalid you will get following error.

Successful Commit

Once the API key has been validated, you can start committing to Jovian by clicking Commit button. Once the
Notebook has been committed successfully you will get the confirmation message with the link where the Jupyter
Notebook has been uploaded to, you can click the link to your Notebook in Jovian.

44 Chapter 21. Jovian: Libraries and Integrations

https://jovian.ml?utm_source=docs
https://jovian.ml?utm_source=docs
https://jovian.ml?utm_source=docs


Jovian

21.2.2 Commit with more options

This makes use of jovian.commit’s parameters to enable the user to commit with preferences like private notebook,
new notebook project, to add outputs and files . . . ..

Step 1: click the dropdown menu

Step 2: choose commit with options

Note: By default the parameters are derived from jovian.commit, changes to any parameter persists after commit.

Step 3: Click on Commit to commit the notebook with following options.

21.2.3 Enable or Disable the extension from CLI

You can also disable the extension by running the following command.

$ jupyter labextension disable jovian-jupyterlab

To Enable the Notebook Extension, when you have manually disabled it.

$ jupyter labextension enable jovian-jupyterlab

21.3 Github Integration

jovian.commit automatically performs git commit if the current notebook/script is in a git repository, as git_commit
is True by default and works only inside a git repository.

Use git_message parameter to give a different commit message to git, else it will take jovian’s commit message
by default.

jovian.commit(message="jovian version commit message",
git_message="git commit message")

Jovian also generates a link to the git commit associated to each jovian commit versions and is accessible
with a button on the notebook linking to github/gitlab.

Important: Jovian does not perform git push, so if the asscociated link is not available then you’ll have push
your repo.

21.4 Keras Integration

Step 1 Import

import jovian
from jovian.callbacks.keras import JovianKerasCallback

Step 2 Pass the callback to the fit method.

# To record logs of every epoch and to notify on slack
jvn_cb = JovianKerasCallback(arch_name='resnet18', every_epoch=True, notify=True)
model.fit(x_train, y_train, ...., callbacks=[jvn_cb])

21.3. Github Integration 45

https://git-scm.com/docs/git-commit


Jovian

For more details visit Keras callback API reference

Step 3 Perform jovian commit

jovian.commit(message="keras callback")

Step 4 View and compare experiment logs

View all the log of a certain version is the Records Tab

Compare the results of many expriments that you have performed. For more usage of compare details visit Compare

21.5 Fastai Integration

Step 1 Import

import jovian
from jovian.callbacks.fastai import JovianFastaiCallback

Step 2 Pass the callback to the fit method.

learn = cnn_learner(data, resnet34)
jvn_cb = JovianFastaiCallback(learn, 'res18')
learn.fit_one_cycle(5, callbacks = jvn_cb)

For more details visit Fastai callback API reference

Step 3 Perform jovian commit

jovian.commit(message="fastai callback")

Step 4 View and compare experiment logs

View all the log of a certain version is the Records Tab

Compare the results of many expriments that you have performed.For more usage of compare details visit Compare

21.6 VS Code Integration

jovian.commit works for VS Code Notebooks too.

jovian.commit(message="example commit", filename="lesson1-pets")

Visit commit api reference for more commit options

21.7 PyCharm Integration

jovian.commit works for PyCharm notebooks too.

jovian.commit(message="pycharm commit")

46 Chapter 21. Jovian: Libraries and Integrations

https://code.visualstudio.com/docs/python/jupyter-support
https://www.jetbrains.com/help/pycharm/jupyter-notebook-support.html


Jovian

Visit commit api reference for more commit options

Important: Jupyter support is provided in PyCharm’s Professional version.

21.8 Tensorflow Integration

Page under Construction

21.9 PyTorch Integration

Page under Construction

21.10 Telegram Integration

Page under Construction

21.11 Scikit Learn Integration

Page under Construction

21.12 Xgboost Integration

Page under Construction

21.13 SciPy Integration

Page under Construction

21.14 OpenCV Integration

Page under Construction

21.15 Apache Spark Integration

Page under Construction

21.8. Tensorflow Integration 47



Jovian

21.16 Anaconda Integration

Page under Construction

48 Chapter 21. Jovian: Libraries and Integrations



INDEX

C
commit() (in module jovian), 29

J
JovianFastaiCallback (class in jo-

vian.callbacks.fastai), 37

L
log_dataset() (in module jovian), 31
log_hyperparams() (in module jovian), 31
log_metrics() (in module jovian), 31

N
notify() (in module jovian), 33

R
reset() (in module jovian), 32

49


	Installation
	Uploading Jupyter Notebooks to Jovian
	Uploading Notebooks
	Benefits of Jovian

	Reproducing uploaded notebooks
	Clone
	Fork

	Notebook versioning and diffs
	Version control
	View Differences

	Attaching files and model outputs
	How to attach files?
	What to include in the files argument?
	What to include in the artifacts argument?
	Where to search for the files after committing?

	Tracking Datasets, Hyperparameters and Metrics
	Dataset
	Hyperparameters
	Metrics
	Reset

	Comparing and Analyzing experiments
	Sort
	Show, Hide and Reorder columns
	Add notes
	View Diff between specific versions
	Archive/Delete versions
	Filter

	Collaborating on Jovian projects
	How to add collaborators?
	Comment on individual code cells
	Maintain public, secret and private notebooks

	Embed Jupyter Notebooks with Jovian.ml
	Live Demo
	Open up Embed modal
	Customize options and preview
	Copy and Embed

	Slack Notifications
	Connect to a Slack Workspace
	Send Notifications from your script
	Integration Preferences

	Adding Topics to you Notebooks
	About Topics
	How to add Topics in your notebooks?
	Explore Topics

	Git Integration
	Jovian Pro
	Commit
	Log Dataset, Hyperparams & Metrics
	Send Notifications to Slack
	Command Line Commands
	Initialize
	Clone a Notebook
	Pull the latest Notebook
	Install the required dependencies
	Version
	Enable or Disable Jupyter Notebook Extension

	Fastai Callback
	Keras Callback
	oEmbed Endpoint for embedding Jovian Notebooks
	API Endpoint URL

	Jovian: Libraries and Integrations
	Jupyter Notebook Extension
	Jupyter Lab Extension
	Github Integration
	Keras Integration
	Fastai Integration
	VS Code Integration
	PyCharm Integration
	Tensorflow Integration
	PyTorch Integration
	Telegram Integration
	Scikit Learn Integration
	Xgboost Integration
	SciPy Integration
	OpenCV Integration
	Apache Spark Integration
	Anaconda Integration

	Index

